高中数学知识点总结
高中数学知识点总结
进入高中之后,数学对于许多学生来说,是一个学习较难的科目,且一些学生在数学这门课上都是越学越不会,那么高中数学知识点有哪些?下面是我给大家带来的高中数学知识点 总结 _高中数学知识点最全版,以供大家参考! ▼ 高中数学知识点总结1 1、命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 3、 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 4、反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x;②互换x、y;③注明定义域) 5、反函数的性质有哪些? ①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性; 6、 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) ▼ 高中数学知识点总结2 1、三类角的求法: ①找出或作出有关的角。 ②证明其符合定义,并指出所求作的角。 ③计算大小(解直角三角形,或用余弦定理)。 2、正棱柱——底面为正多边形的直棱柱 正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。 正棱锥的计算集中在四个直角三角形中: 3、怎样判断直线l与圆C的位置关系? 圆心到直线的距离与圆的半径比较。 直线与圆相交时,注意利用圆的“垂径定理”。 4、 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。 不看后悔!清华名师揭秘学好高中数学的 方法 培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢? (1) 欣赏数学的美感 比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密…… 举个例子, 通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。 (2)注意到数学在实际生活中的应用。 例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解. 学好数学,是现代公民的 基本素养 之一啊. (3)采用灵活的教学手段,与时俱进。 利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。 (4)适当看一些科普类的书籍和 文章 。 比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。 ▼ 高中数学知识点总结3 1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。 2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。 3、向量——既有大小又有方向的量。在此规定下向量可以在平面(或空间)平行移动而不改变。 4、并线向量(平行向量)——方向相同或相反的向量。规定零向量与任意向量平行。 高中数学知识点总结相关文章: ★ 高中数学学习方法:知识点总结最全版 ★ 高中数学知识点全总结最全版 ★ 高中数学知识点总结 ★ 高中高一数学知识点总结 ★ 高一数学知识点全面总结 ★ 高中数学知识点全总结 ★ 高中数学知识点总结及公式大全 ★ 高二数学知识点总结 ★ 高中数学知识点归纳最新 ★ 高中数学知识点大全 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?6990a94c9bf3cca817150d7468a26be6"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
高中数学重点知识点总结大全归纳
在复习高中数学的过程中,很多同学没有对数学知识及时总结梳理记忆,导致复习效率不高。下面是由我为大家整理的“高中数学重点知识点总结大全归纳”,仅供参考,欢迎大家阅读本文。 高中数学重点知识点总结大全归纳 1、基本初等函数 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、同角三角函数间的平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 3、同角三角函数间积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα 4、同角三角函数间倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 5、利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。 反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导, (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间)。 (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间)。 (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。 6、求函数的极值: 设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。 可导函数的极值,可通过研究函数的单调性求得,基本步骤是: (1)确定函数f(x)的定义域。 (2)求导数f(x)。 (3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况。 (4)检查f(x)的符号并由表格判断极值。 7、求函数的值与最小值: 如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。 求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值。 (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。 8、解决不等式的有关问题: (1)不等式恒成立问题(绝对不等式问题)可考虑值域。 f(x)(xA)的值域是[a,b]时, 不等式f(x)0恒成立的充要条件是f(x)max0,即b0; 不等式f(x)0恒成立的充要条件是f(x)min0,即a0。 f(x)(xA)的值域是(a,b)时, 不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。 (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。 9、奇偶性定义: 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 10、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。 (2)任何数同零相乘都得零。 (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 高中数学的学习方法 1、及时了解、掌握常用的数学思想和方法。学好高中数学,需要我们从数学思想与方法高度来掌握它。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。 2、在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。 3、建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。 4、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到找错、析错、改错、防错。达到能从反面入手深入理解正确东西,能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 5、熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
高中数学知识点总结
高中数学集合知识点总结 数学集合是一个简单但必考的考点,那么相关的知识点又有什么呢?下面高中数学集合知识点总结是我为大家带来的,希望对大家有所帮助。 高中数学集合知识点总结 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: ①.元素的确定性;②.元素的互异性;③.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的分类: 1.有限集含有有限个元素的`集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 4、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋} 1.用拉丁字母表示集合:A={我校的篮球队员}B={12345} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2} 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA 2.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 3.“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-11}“元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集。A?A ②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?BB?C那么A?C ④如果A?B同时B?A那么A=B 三、集合的运算 1、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 2.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 3、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA={x?x?S且x?A} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U 4、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A A∪φ=AA∪B=B∪A. ;
高中数学知识点总结归纳
如果把数学比作一把锁的话,那思考就是一把开锁的金钥匙,为你打开这数学之锁。下面就是我为大家精心整理的高中数学知识点 总结 ,希望对你们有所帮助! 高中数学知识点总结归纳 1、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。 2、集合中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。 Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。 3、ax2+bx+c<0的解集为x(0 +c>0的解集为x,cx2+bx+a>0的解集为>x或x<;ax2—bx+ 4、c0的解集为->x或x<-。 5、原命题与其逆否命题是等价命题。 原命题的逆命题与原命题的否命题也是等价命题。 6、函数是一种特殊的映射,函数与映射都可用:f:A→B表示。 A表示原像,B表示像。当f:A→B表示函数时,A表示定义域,B大于或等于其值域范围。只有一一映射的函数才具有反函数。 7、原函数与反函数的单调性一致,且都为奇函数。 偶函数和周期函数没有反函数。若f(x)与g(x)关于点(a,b)对称,则g(x)=2b-f(2a-x). 8、若f(-x)=f(x),则f(x)为偶函数,若f(-x)=f(x),则f(x)为奇函数; 偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。反之亦然。若奇函数在x=0处有意义,则f(0)=0。函数的单调性可用定义法和导数法求出。偶函数的导函数是奇函数,奇函数的导函数是偶函数。对于任意常数T(T≠0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k≠0. 9、周期函数的特征性:①f(x+a)=-f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b-a)的函数④若f(x +a)?f(x+b)=±1,即f(x+a)=±,则f(x)是T=2(b-a)的函数⑤f(x+a)=±,则f(x) 是T=4(b-a)的函数 10、复合函数的单调性满足“同增异减”原理。 定义域都是指函数中自变量的取值范围。 11、抽象函数主要有f(xy)=f(x)+f(y)(对数型),f(x+y)=f(x)?f(y)(指数型),f(x+y)=f(x)+f(y)(直线型)。 解此类抽象函数比较实用的 方法 是特殊值法和周期法。 12、指数函数图像的规律是:底数按逆时针增大。 对数函数与之相反. 13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。 在解可化为a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指数方程或不等式时,常借助于换元法,应特别注意换元后新变元的取值范围。 14、log10N=lgN;logeN=lnN(e=2.718???);对数的性质:如果a>0,a≠0,M>0N>0, 那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N. 换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk. 15、函数图像的变换: (1)水平平移:y=f(x±a)(a>0)的图像可由y=f(x)向左或向右平移a个单位得到; (2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到; (3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x). (4) , 学习计划 ;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。 (5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于 x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。 15、等差数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+ 16、若n+m=p+q,则am+an=ap+aq; sk,s2k—k,s3k—2k成以k2d为公差的等差数列。an是等差数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等差数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等差数列。 17、等比数列中,an=a1?qn-1=am?qn-m,若n+m=p+q,则am?an=ap?aq;sn=na1(q=1), sn=,(q≠1);若q≠1,则有=q,若q≠—1,=q; sk,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式: =—,=?(—),常用数列递推形式:叠加,叠乘, 18、弧长公式:l=|α|?r。 s扇=?lr=?|α|r2=?;当一个扇形的周长一定时(为L时), 其面积为,其圆心角为2弧度。 19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ; Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ 高考数学必考知识点 1.【数列】&【解三角形】 数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来, 2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。 数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。 解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。 2.【立体几何】 高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。 3.【概率】 高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。 4.【解析几何】 高考在第20题的位置考查一道解析几何题。主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。 5.【导数】 高考在第21题的位置考查一道导数题。主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。 6.【选做题】 今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查绝对值不等式的化简,求参数的范围及不等式的证明。 高中数学知识点总结 一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件. 二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例. 三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式. 四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例. 五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移. 六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式. 七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程. 八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质. 九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球. 十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质. 十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个) 十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归. 十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性. 十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值. 十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数x的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积。在周长一定的简单闭曲线的集合中,圆的面积。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。答案补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。 高中数学知识点总结归纳最新相关 文章 : ★ 高中数学知识点全总结最全版 ★ 高中数学知识点最新归纳 ★ 高考数学知识点总结最新整理 ★ 高中数学考点整理归纳 ★ 高中数学知识点全总结 ★ 高中数学学习方法:知识点总结最全版 ★ 高中高一数学知识点总结 ★ 高中数学全部知识点提纲整理 ★ 最新高考数学知识点归纳总结 ★ 高考数学知识点最新总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
高中数学重点知识归纳总结
高中以来作为主科的数学越来越难,导致一部分同学们不知道如何复习,该注意的地方在那里。以下是由我为大家整理的“高中数学重点知识归纳总结”,仅供参考,欢迎大家阅读。 高中数学重点知识归纳总结 一、集合与简易逻辑 1.集合的元素具有确定性、无序性和互异性. 2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集. 3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为 4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”. 5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”. 6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”. 7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”. 原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果. 注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ?. 8.充要条件 二、函 数 1.指数式、对数式, 2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”. (2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个. (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像. 3.单调性和奇偶性 (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同. 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反. 注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: . (2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件. (3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等. (4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集). (7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”. 复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义) 4.对称性与周期性(以下结论要消化吸收,不可强记) (1)函数 与函数 的图像关于直线 ( 轴)对称. 推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称. 推广二:函数 , 的图像关于直线 (由 确定)对称. (2)函数 与函数 的图像关于直线 ( 轴)对称. (3)函数 与函数 的图像关于坐标原点中心对称. 推广:曲线 关于直线 的对称曲线是 ; 曲线 关于直线 的对称曲线是 . (5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 . 如果 是R上的周期函数,且一个周期为 ,那么 . 特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 . 三、数 列 1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论). 注意: ; . 2.等差数列 中: (1)等差数列公差的取值与等差数列的单调性. (2) ; . (3) 、 也成等差数列. (4)两等差数列对应项和(差)组成的新数列仍成等差数列. (5) 仍成等差数列. (8)“首正”的递等差数列中,前 项和的最大值是所有非负项之和; “首负”的递增等差数列中,前 项和的最小值是所有非正项之和; (9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项. (10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解. (11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式). 3.等比数列 中: (1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性. (3) 、 、 成等比数列; 成等比数列 成等比数列. (4)两等比数列对应项积(商)组成的新数列仍成等比数列. (8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积; (9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和. (10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解. (11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式). 4.等差数列与等比数列的联系 (1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列. (2)如果数列 成等比数列,那么数列 必成等差数列. (3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件. (4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列. 注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法. 5.数列求和的常用方法: (1)公式法:①等差数列求和公式(三种形式), ②等比数列求和公式(三种形式), (2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. (3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法). (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一). (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: 特别声明:?运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论. (6)通项转换法。 四、三角函数 1. 终边与 终边相同( 的终边在 终边所在射线上) . 终边与 终边共线( 的终边在 终边所在直线上) . 终边与 终边关于 轴对称 . 终边与 终边关于 轴对称 . 终边与 终边关于原点对称 . 一般地: 终边与 终边关于角 的终边对称 。 与 的终边关系由“两等分各象限、一二三四”确定。 2.弧长公式: ,扇形面积公式: ,1弧度(1rad) 。 3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正、 注意: 4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 . 5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”; 6.三角函数诱导公式的本质是:奇变偶不变,符号看象限. 7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”! 角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。 常值变换主要指“1”的变换: 三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。 注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起 )。 辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为的情形有实数解 。 8.三角函数性质、图像及其变换: (1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性 注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗? (2)三角函数图像及其几何性质: (3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。 (4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。 9.三角形中的三角函数: (1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方。 (2)正弦定理: (R为三角形外接圆的半径)。 注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解。 (3)余弦定理: 等,常选用余弦定理鉴定三角形的类型。 拓展阅读:如何学好数学 1、精做题 数学能力的提高离不开做题,但当处理的题目达到一定的量后,决定复习效果的关键因素就不再是题目的数量,而在于题目的质量和处理水平。解数学题要着重研究解 题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建 知识的横向联系又养成多角度思考问题的习惯。 一节课与其抓紧时间大汗淋淋地做三十道考查思路重复的题,不如深入透彻地掌握一道典型题。 2、学会节省做题时间 要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断 积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。解法的差异,速度的差异,正体现了 学生不同层次的思维水平。 3、做好改错反思,每个学生都有一个改错本 在复习过程中,难免会出现一些大大小小的失误,也会遇到一些拦路虎,这时候,可能要么束手无策,要么费了九牛二虎之力才能解决,要么是问题虽然解决了,但自我感觉不好———或是思路不清,东拼西凑才找到答案;或是解法繁琐,不尽人意。碰到这种情况不要紧张,这正是拓展思维、提高能力的契机,不要轻易放过。 “错误是最好的老师”,我们要认真的纠正错误,当然,更重要的是寻找错因,及时进行总结,三、五个字,一、两句话都行,言简意赅,切中要害,以利于吸取教训, 力求相同的错误不犯第二次;轻描淡写,文过饰非的查错因是没有实质性的意义的。只有认真的追根溯源的查找错因,教训才会深刻。 在复习过程中,要注意多学习,多更新,不要固守自己熟悉但落后的方法习惯,要向老师学,向其它同学学,取人之长,补己之短。要做好解题后的反思,清理解题思路,寻求最佳解答方法,以达到举一反三、融会贯通的目的。 4.养成好习惯 好的习惯终生受益,不好的习惯终生后悔,吃亏。 一慢一快,稳中求快,立足一次成功: 解题时审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。这样做的后果一则容易先入为主,致使有时错误难以发现;二则一旦发现错误,尤其是起步就错,又要重复做一遍,既浪费时间,又造成心理负担。 注意书写规范,重要步骤不能丢,丢步骤=丢分。 考试中应统筹安排时间,先易后难,不要在一道题上花费太多时间,有时放弃可能是最佳选择。 5 .正确处理传统内容与新增内容 无论是陈题新题,传统内容还是新增内容,要点在于训练学生的思维理解,分析问题、解决问题的能力。 6.提高运算能力 坚持长期训练培养,注重算理,注意近似计算,估算,心算,以想代算。
高一数学知识点有哪些?
高一数学知识点:一、集合有关概念。1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1)元素的确定性。2)元素的互异性。3)元素的无序性。说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}。1)、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}。2)、集合的表示方法:列举法与描述法。二、集合间的基本关系。1、“包含”关系—子集。注意:有两种可能。(1)A是B的一部分。(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。2、“相等”关系(5≥5,且5≤5,则5=5)。实例:设A={x|x2—1=0}B={—1,1}“元素相同”。结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。①任何一个集合是它本身的子集。AíA。②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)。③如果AíB,BíC,那么AíC。④如果AíB同时BíA那么A=B。3、不含任何元素的集合叫做空集,记为Φ。规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算。1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。
高中数学知识点有哪些?
01 高中数学是全国高中生学习的一门学科。包括《集合与函数》《三角函数》《不等式》《数列》《立体几何》《平面解析几何》等部分, 高中数学主要分为代数和几何两大部分。代数主要是一次函数,二次函数,反比例函数和三角函数。几何又分为平面解析几何和立体几何两大部分。 一、 集合 (1)集合的含义与表示 1通过实例,了解集合的含义,体会元素与集合的“属于”关系。 2能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。 (2)集合间的基本关系 1理解集合之间包含与相等的含义,能识别给定集合的子集。 2在具体情境中,了解全集与空集的含义。 (3)集合的基本运算 1理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 2理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 3能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 函数概念与基本初等函数: (1)函数 1进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 2在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。 3了解简单的分段函数,并能简单应用。 4通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。 5学会运用函数图象理解和研究函数的性质(参见例1)。 (2)指数函数 1(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。 2理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 3理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。 4在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 (3)对数函数 1理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。 2通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。 3知道指数函数 与对数函数 互为反函数(a>0,a≠1)。 (4)幂函数 通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。 (5)函数与方程 1结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。 2根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 (6)函数模型及其应用 1利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。 2收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 二、三角函数 (1)任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化。 (2)三角函数 1借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。 2借助单位圆中的三角函数线推导出诱导公式( 的正弦、余弦、正切),能画出 的图象,了解三角函数的周期性。 3借助图象理解正弦函数、余弦函数在 ,正切函数在 上的性质(如单调性、最大和最小值、图象与x轴交点等)。 4理解同角三角函数的基本关系式: 5结合具体实例,了解 的实际意义;能借助计算器或计算机画出 的图象,观察参数A,ω, 对函数图象变化的影响。 6会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。 三、数列 (1)数列的概念和简单表示法 了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数。 (2)等差数列、等比数列 1理解等差数列、等比数列的概念。 2探索并掌握等差数列、等比数列的通项公式与前n项和的公式。 3能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题(参见例1)。 4体会等差数列、等比数列与一次函数、指数函数的关系。 四、不等式 (1)不等关系 感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。 (2)一元二次不等式 1经历从实际情境中抽象出一元二次不等式模型的过程。 2通过函数图象了解一元二次不等式与相应函数、方程的联系。 3会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。 (3)二元一次不等式组与简单线性规划问题 1从实际情境中抽象出二元一次不等式组。 2了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。 3从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(。 (4)基本不等式: 1探索并了解基本不等式的证明过程。 2会用基本不等式解决简单的最大(小)值问题。 五、立体几何初步 (1)空间几何体 1利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。 2能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。 3通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。 4完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。 5了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 (2)点、线、面之间的位置关系 1借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2:过不在一条直线上的三点,有且只有一个平面。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 公理4:平行于同一条直线的两条直线平行。 定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。 2以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。 操作确认,归纳出以下判定定理。 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 一个平面过另一个平面的垂线,则两个平面垂直。 操作确认,归纳出以下性质定理,并加以证明。 一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。 两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。 垂直于同一个平面的两条直线平行。 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 3能运用已获得的结论证明一些空间位置关系的简单命题。 平面解析几何初步: (1)直线与方程 1在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。 2理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。 3能根据斜率判定两条直线平行或垂直。 4根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。 5能用解方程组的方法求两直线的交点坐标。 6探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。 (2)圆与方程 1回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。 2能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。 3能用直线和圆的方程解决一些简单的问题。 (3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 (4)空间直角坐标系 1通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。 2通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
高中数学知识点总结及公式大全(3)
高中数学知识点总结及公式:圆的公式 1、圆体积=4/3(pi)(r^3) 2、面积=(pi)(r^2) 3、周长=2(pi)r 4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】 5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】 高中数学知识点总结及公式:椭圆公式 1、椭圆周长公式:l=2πb+4(a-b) 2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差. 3、椭圆面积公式:s=πab 4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。 高中数学知识点总结及公式:等差数列 1、等差数列的通项公式为:an=a1+(n-1)d (1) 2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式. 3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1 高中数学知识点总结及公式:等比数列 1、等比数列的通项公式是:An=A1*q^(n-1) 2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m) 3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列. 在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零. 抛物线 1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。 2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。 3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。 4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。 高中数学知识点总结及公式:点、直线和平面的位置关系 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内。 公理2:过不在同一条直线上的三点,有且只有一个平面。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 公理4:平行于同一条直线的两条直线互相平行。 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。 一、平面的基本性质及应用 1.平面的基本性质 2.等角定理 二、空间两直线的位置关系 1.空间两直线位置关系的分类 2.异面直线所成的角 (1)异面直线所成角的定义 三、空间直线与平面、平面与平面的位置关系 1.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类 (2)平面和平面位置关系的分类 两个平面之间的位置关系有且只有以下两种: (1)两个平面平行——没有公共点; (2)两个平 面相 交——有一条公共直线. 3.常用结论 (1)唯一性定理 ①过直线外一点有且只有一条直线与已知直线平行. ②过直线外一点有且只有一个平面与已知直线垂直. ③过平面外一点有且只有一个平面与已知平面平行. ④过平面外一点有且只有一条直线与已知平面垂直. (2)异面直线的判定方法 经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 下一页高中数学知识点总结及公式
高中数学知识点总结
《高中数学基础知识梳理(数学小飞侠)》百度网盘免费下载链接: https://pan.baidu.com/s/1LY2-paNnORGQ7F2pzg_bOw 提取码: i8i2 资源目录01.集合例题讲解.mp401.集合进阶.mp402函数的值域.mp403函数的定义域与解析式.mp404函数的单调性.mp404函数的奇偶性.mp405指数运算与指数函数.mp407对数运算与对数函数.mp408幂函数突破.mp409函数零点专题.mp410含参二次函数与不等式专题.mp411二次函数根的分布专题.mp412空间几何体.mp413点线面位置关系进阶.mp414平行关系突破.mp415垂直关系突破.mp416空间几何关系综合.mp417直线方程突破.mp418圆的方程突破.mp419算法初步.mp420算法语句与算法案例.mp421数据的收集与频率分布.mp422常用统计量与相关关系.mp423古典概型概率.mp424几何概型概率.mp425任意角重难点.mp426三角函数定义与诱导公式.mp427三角函数图像及性质.mp428平面向量几何运算.mp429平面向量代数运算.mp430.三角恒等变换.mp431.三角函数计算专题.mp432.正弦定理与余弦定理.mp433.等差数列突破.mp434.等比数列突破.mp435.数列通项公式专题 .mp436.数列求和公式专题 .mp437.二次不等式与分式不等式.mp438.线性规划问题.mp439.基本不等式突破.mp440.逻辑用语专题.mp441.椭圆方程及其几何性质.mp442.双曲线方程及其性质.mp443.抛物线方程及其性质.mp444.直线与圆锥曲线综合.mp445.空间向量突破.mp446.导数的计算专题.mp447.导数的应用.mp448.导数的应用(二).mp449.定积分与微积分.mp450.复数专题.mp451.排列组合.mp452.二项式定理.mp453.随机变量及其变量.mp454回归分析与独立性检验.mp4资源目录01.集合例题讲解.mp401.集合进阶.mp402函数的值域.mp403函数的定义域与解析式.mp404函数的单调性.mp404函数的奇偶性.mp405指数运算与指数函数.mp407对数运算与对数函数.mp408幂函数突破.mp409函数零点专题.mp410含参二次函数与不等式专题.mp411二次函数根的分布专题.mp412空间几何体.mp413点线面位置关系进阶.mp414平行关系突破.mp415垂直关系突破.mp416空间几何关系综合.mp417直线方程突破.mp418圆的方程突破.mp419算法初步.mp420算法语句与算法案例.mp421数据的收集与频率分布.mp422常用统计量与相关关系.mp423古典概型概率.mp424几何概型概率.mp425任意角重难点.mp426三角函数定义与诱导公式.mp427三角函数图像及性质.mp428平面向量几何运算.mp429平面向量代数运算.mp430.三角恒等变换.mp431.三角函数计算专题.mp432.正弦定理与余弦定理.mp433.等差数列突破.mp434.等比数列突破.mp435.数列通项公式专题 .mp436.数列求和公式专题 .mp437.二次不等式与分式不等式.mp438.线性规划问题.mp439.基本不等式突破.mp440.逻辑用语专题.mp441.椭圆方程及其几何性质.mp442.双曲线方程及其性质.mp443.抛物线方程及其性质.mp444.直线与圆锥曲线综合.mp445.空间向量突破.mp446.导数的计算专题.mp447.导数的应用.mp448.导数的应用(二).mp449.定积分与微积分.mp450.复数专题.mp451.排列组合.mp452.二项式定理.mp453.随机变量及其变量.mp454回归分析与独立性检验.mp4
高中数学知识点总结
高中数学知识点总结 高中数学知识点有哪些呢?下面是我为大家分享有关高中数学知识点总结,欢迎大家阅读与学习! 一、集合与简易逻辑 1.集合的元素具有确定性、无序性和互异性. 2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集. 3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为 4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”. 5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”. 6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”. 7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” . 8.充要条件 二、函 数 1.指数式、对数式 2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”. (2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个. (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像. 3.单调性和奇偶性 (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: . (2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件. 3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等. (4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集). (7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化.(即复合有意义) 4.对称性与周期性(以下结论要消化吸收,不可强记) (1)函数 与函数 的图像关于直线 ( 轴)对称.推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.推广二:函数 , 的图像关于直线 (由 确定)对称. (2)函数 与函数 的图像关于直线 ( 轴)对称. (3)函数 与函数 的图像关于坐标原点中心对称.推广:曲线 关于直线 的对称曲线是 ;曲线 关于直线 的对称曲线是 . (5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .如果 是R上的周期函数,且一个周期为 ,那么 .特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .三、数 列1.数列的通项、数列项的项数,递推公式与递推数列,数列的'通项与数列的前 项和公式的关系: (必要时请分类讨论). 注意: 2.等差数列 中: (1)等差数列公差的取值与等差数列的单调性. (2) 两等差数列对应项和(差)组成的新数列仍成等差数列. (3) 仍成等差数列.(4“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前 项和的最小值是所有非正项之和; (5)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项. (6)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解. (7)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式). 3.等比数列 中: (1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性. (2) 成等比数列; 成等比数列 成等比数列. (3)两等比数列对应项积(商)组成的新数列仍成等比数列. (4) 成等比数列. (5)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积; (6)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和. (7)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解. (8)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式). 4.等差数列与等比数列的联系 (1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列. (2)如果数列 成等比数列,那么数列 必成等差数列. (3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件. (4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列. 注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法. ;
上一篇:周永恒
下一篇:没有了